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Anderson localization as a parametric instability of the linear kicked oscillator

L. Tessieri and F. M. Izrailev
Instituto de Fı´sica, Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla, Puebla 72570, Mexico

~Received 15 December 1999!

We rigorously analyze the correspondence between the one-dimensional standard Anderson model and a
related classical system, the ‘‘kicked oscillator’’ with noisy frequency. We show that the Anderson localization
corresponds to a parametric instability of the oscillator, the localization length being related to the rate of
exponential growth of the energy of the oscillator. Analytical expression for a weak disorder is obtained, which
is valid both inside the energy band and at the band edge.

PACS number~s!: 71.23.An, 72.15.Rn
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I. INTRODUCTION

Recently it was shown that quantum one-dimensio
tight-binding models with any diagonal site potential can
formally represented in terms of a two-dimensional~2D!
Hamiltonian map@1#. On the other hand, this classical map
associated with a linear oscillator subjected to a linear fo
given in the form of time-dependentd kicks. In this picture,
both the frequency of the unperturbed oscillator and the
riod of the kicks are determined by the energy of an eig
state, and the amplitudes of the kicks are defined by the
potential in the original quantum model. It was shown th
by exploring the dynamics of this classical system, one
obtain global characteristics of the eigenstates, such as
localization length defined by the Lyapunov exponent
classical trajectories.

In particular, analytical estimates have been obtained
@1# for a specific diagonal site-potential potential with sho
range correlations~the so-called dimer model, see@2#!. Other
applications to the case of general correlated diagonal@3#
and off-diagonal@4# disorder have revealed very importa
peculiarities. One of the most interesting results has b
obtained in@3# where it was shown how to construct rando
potentials with specific two-point correlators which result
the emergence of the mobility edge in one-dimensional
ometry. Based on these predictions, very recently experim
tal realization of this effect has been done in one-mode
crowave guides@5#.

In this paper, we perform an analytical study of the sta
dard Anderson model with diagonal uncorrelated disord
paying main attention to the problem of the mathemati
correspondence between the quantum model and its clas
representation in the form of a linear kicked oscillator. Mo
specifically, we are interested in the connection between
Anderson localization and the parametric instability of t
corresponding classical system. Although the results
tained for the localization length in the weak disorder lim
are well known from other studies, the method we use her
a new one and it may explain the mechanism of the And
son transition in new terms. Moreover, this approach may
very useful for 2D and 3D cases, for which analytical resu
for global properties of eigenstates are very restricted.

II. DEFINITION OF THE MODEL

In this paper we study the relation existing between
standard 1D Anderson model and a related physical sys
PRE 621063-651X/2000/62~3!/3090~6!/$15.00
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a linear oscillator with noisy frequency. The quantum mod
is defined by the stationary Schro¨dinger equation@6#

cn111cn211encn5Ecn , ~1!

where cn represents the electron wave-function at thenth
lattice site, and the site energiesen are independent random
variables with a common distributionp(e). In the standard
Anderson model the probabilityp(e) has the form of a box
distribution,

p~e!5
1

W
uS W

2
2ueu D , ~2!

whose widthW sets the strength of the disorder. In the fo
lowing, however, we will not restrict our considerations
the specific form~2! of the probability distribution, but sim-
ply assume that the variablesen have zero mean (^en&50)
and a finite variancêen

2&.
The kicked oscillator is a harmonic oscillator that unde

goes periodic and instantaneous variations of the momen
~the kicks!. Such a system is defined by the Hamiltonian

H5vS p2

2
1

x2

2 D1
x2

2
j~ t !, ~3!

where

j~ t !5 (
n52`

1`

And~ t2nT!. ~4!

The random coefficientsAn that appear in the definition o
the noise~4! represent the intensity of the kicks, i.e., they a
proportional to the sudden momentum changes experien
by the oscillator at timest5nT. In other words, the system
~3! represents a harmonic oscillator with a mean frequencv
perturbed by the noise termj(t). Using the definition~4!,
one can easily reconduct the statistical properties of the n
j(t) to the corresponding properties of the variablesAn ; in
particular, the mean and the variance ofj(t) can be ex-
pressed as
3090 ©2000 The American Physical Society
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^j~ t !&5 lim
t→`

1

t E2t/2

t/2

j~ t !dt

5 lim
N→`

1

NT (
n52N/2

N/2

An5
^An&

T

and

^j~ t !j~ t1s!&5 lim
t→`

1

tE2t/2

t/2

j~ t !j~ t1s!dt

5
1

T
d~s! lim

N→`

1

N (
n52N/2

N/2

An
25

^An
2&

T
d~s!.

The equivalence of the models~1! and ~3! has been dis-
cussed in@1#. There it was shown how the two-dimension
map

xn115xn cos~vT!1~pn2Anxn!sin~vT!,
~5!

pn1152xn sin~vT!1~pn2Anxn!cos~vT!,

can be derived by integrating over a periodT the Hamil-
tonian equations of motion of the kicked oscillator~3!. Note
that in the map~5! xn and pn stand for the coordinate an
momentum of the oscillator immediately before thenth kick.
Eliminating the momentum from Eqs.~5!, one eventually
obtains the relation

xn111xn211An sin~vT!xn52xn cos~vT!,

which coincides with the Anderson equation~1! if one iden-
tifies the site amplitudecn with the coordinatexn of the
oscillator and if the parameters of the models~1! and~3! are
related to each other by the equalities

en5An sin~vT!; E52 cos~vT!. ~6!

In Ref. @1# the classical map~5! was used as a tool to
investigate the properties of the model~1!; here we focus
instead on the direct analysis of the Hamiltonian model~3!.

III. THE OSCILLATOR WITH NOISY FREQUENCY

The dynamics of the kicked oscillator~3! is determined
by the Hamiltonian equations of motion:

ṗ52„v1j~ t !…x, ẋ5vp. ~7!

In order to study the behavior of the kicked oscillator, it
convenient to substitute the couple of differential equatio
~7! with the system of stochastic Itoˆ equations,

dp52vx dt2xA^An
2&/T dW~ t !,

~8!
dx5vp dt,

where W(t) is a Wiener process witĥdW(t)&50 and
^dW(t)2&5dt.

The systems~7! and ~8! can be considered equivalent in
asmuch as the shot noisej(t) is adequately represented by
l

s

Wiener processW(t). That is the case if the strength of th
single kicks is weak, i.e., if the condition

^An
2&!1 ~9!

is fulfilled. That can be understood by considering that
present situation is analogous to the one that occurs in
Brownian motion of a heavy particle suspended in a fluid
light molecules. The instantaneous impacts of the fluid m
ecules on the massive particle can be successfully descr
by a continuous Wiener process, provided that each sin
collision does not produce a significant displacement of
heavy particle. When the mass of the suspended partic
not much bigger than the one of the impinging molecul
the nature of the motion changes and the effect of the m
lecular collisions can no longer be depicted by a Wien
process.

A similar analogy can be drawn between the present c
and the random-walk problem. To be exact, let us consid
one-dimensional random walk made by someone that ta
steps of lengthl at timesnT ~with n integral!. At each step
the walker is supposed to go to the right or to the left w
equal probability. In this model the walker’s positio
changes with each step much in the way the momentum
the kicked oscillator does under the action of a kick: in bo
cases the relevant physical quantity is varied in a sudden
random way at regular time intervals. This analogy mak
interesting to notice that, by going to the limit

l→0, T→0,

while holding fixed the ratio

D5
l 2

T

the discrete time random walk evolves in a Brownian mot
with diffusion constantD ~see, e.g., Ref.@7#!. In other words,
a Wiener process can be regarded as a limit case of ran
walk in the limit of very small and fast-spaced steps. In
similar way, the ‘‘jump process’’j(t) can be described by a
‘‘diffusion process’’W(t) when the condition~9! is satisfied,
with the ratio

k5
^An

2&
vT

~10!

playing a role analogous to that of the diffusion constantD.
This conclusion, although substantially correct, must

made more precise. The analogy between the kicked osc
tor ~3! and the free Brownian particle or the random walk
although of much use, cannot be complete because
kicked oscillator, unlike the two latter systems, is endow
with an autonomous dynamics dictated by the elastic fo
and independent from the noise. As a consequence, in as
ing the equivalence of the shot noisej(t) with the continu-
ous processW(t), one must also take into account the po
sibility that the interplay of the discrete noise~4! with the
unperturbed motion of the oscillator might produce differe
effects than those induced by the addition of the continu
processW(t) to the deterministic dynamics of the noisele
oscillator. More specifically, one can guess that poss
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3092 PRE 62L. TESSIERI AND F. M. IZRAILEV
‘‘resonance’’ effects due to the conmensurability of the f
quency 1/T of the kicks with the frequencyv/2p of the
unperturbed oscillator might occur. This is actually the ca
at the band center, when the two frequencies stand in
ratio vT/2p51/4, as we will discuss in Sec. V. Apart from
this exceptional case, however, the dynamical features o
oscillators ~3! and ~8! do not differ, as will appear in the
following analysis.

In conclusion, the kicked oscillator~7! and the stochastic
oscillator~8! are equivalent when the individual kicks of th
first model are weak. On the other hand, since the kic
oscillator ~7! is equivalent to the Anderson model~1!, one
can conclude that the stochastic oscillator~8! provides a cor-
rect description of the Anderson model for the weak disor
case. This allows one to analyze the solutions of Eq.~1! in
terms of phase-space ‘‘trajectories’’ of the stochastic osci
tor ~8!. In this picture, localized states for the Anders
model correspond to unbounded trajectories of the oscill
in the phase space, while extended states translate
bounded trajectories.

In the following we will restrict our considerations to th
case defined by the weak disorder condition~9! and thus
ensure the equivalence between the Anderson model~1! and
the stochastic oscillator~8!.

IV. LYAPUNOV EXPONENT

Once we have established the correspondence of
Anderson model with the stochastic oscillator~8!, we can
proceed to redefine essential features of the first model in
dynamical language of the second. In particular, we are
terested in deriving a formula for the Lyapunov expone
which gives the inverse localization length for the eige
states of Eq.~1!. Since these eigenstates correspond to
jectories of the stochastic oscillator~8!, the Lyapunov expo-
nent is naturally redefined as the exponential divergence
of neighboring trajectories, i.e., through the limit

l5 lim
T→`

lim
d→0

1

T E
0

T

dt
1

d
ln

x~ t1d!

x~ t !
, ~11!

which corresponds to the standard expression

l5 lim
N→`

1

N (
n51

N

ln
cn11

cn

for the Anderson model~1!. By taking the limitd→0 first,
the expression~11! can be put in the simpler form

l5^z&5 lim
T→`

1

T E
0

T

dt z~ t !, ~12!

where the Ricatti variablez5 ẋ/x has been introduced an
the symbol̂ z& stands for the~time! average ofz.

To compute the Lyapunov exponent, as defined by
~12!, it is necessary to analyze the dynamics of the varia
z5vp/x. The time evolution of this quantity is determine
by the Itôstochastic equation

dz52~v21z2!dt2vA^An
2&/T dW~ t !, ~13!
-
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which can be easily derived using Eq.~8! and the standard
rules of the Itoˆ calculus.

Notice that, while the position and momentum of the o
cillator ~8! do not evolve independently from each other, t
dynamics of their ratioz5vp/x is totally autonomous from
that of any other variable. As a consequence, one deals
the single differential equation~13! instead of having to cope
with a set of coupled equations like Eq.~8!. Thus, the intro-
duction of the variablez, which is suggested by the definitio
~12! of the Lyapunov exponent, turns out to be benefic
also for the study of the stochastic oscillator~8!.

As is known, the Itoˆ stochastic differential equation~13!
is equivalent to the Fokker-Planck equation@7,8#

]p

]t
~z,t !5

]

]z
@~v21z2!p~z,t !#1

v2^An
2&

2T

]2p

]z2
~z,t !,

~14!

which gives the time evolution of the probability densi
p(z,t) of the stochastic variablez. In other words, the evo-
lution of z(t) dictated by Eq.~13! is a diffusion process with
a deterministic drift coefficient (v21z2) and a noise-
induced diffusion coefficientv2^An

2&/T.
The stationary solution of Eq.~14! is

p~z!5FC11C2E
2`

z

dx exp$F~x/v!%Gexp$2F~z/v!%,

whereC1 andC2 are integration constants and the functi
F(x) is given by the relation

F~x!5
2

k S x1
x3

3 D , ~15!

which contains the parameterk defined by Eq.~10!. Since
p(z) is a probability distribution, it must be integrable an
therefore the constantC1 must vanish. The residual consta
C2 is determined by the normalization conditio
*2`

` p(z)dz51. The resulting distribution is

p~z!5
1

Nv2E2`

z

dx exp$F~x/v!2F~z/v!% ~16!

with

N5Apk

2 E
0

`

dx
1

Ax
expF2

2

k S x1
x3

12D G . ~17!

Once the steady-state probability distribution~16! is
known, one can use it to compute the average ofz that de-
fines the Lyapunov exponent~12!

l5^z&5E
2`

`

dz z p~z!. ~18!

By this way one obtains

l5
v

2NE0

`

dxAx expF2
2

k S x1
x3

12D G . ~19!
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Formula ~19! is the central result of this paper. It gives a
expression for the inverse localization length in the And
son model that turns out to be valid both inside the ene
band and at the band edge~although it fails to reproduce th
anomaly of the Lyapunov exponent at the band center!. The
extended validity range of the expression~19! is a remark-
able feature, because the behavior of the localization len
at the band edge is known to be anomalous@9,10# and has
been previously derived with methods well distinct~and
more complicated! than the ones used to study the localiz
tion length inside the band. In the next two sections we w
show how expression~19! reproduces the known formula
for the localization length inside the energy band as wel
in a neighborhood of the band edge.

Before proceeding along this line, however, it is opp
tune to complete this section with a couple of further
marks. In the first place, it is interesting to notice that e
pressions very similar to those of Eqs.~16! and ~19! have
been obtained for a different but related model: that o
particle in a one-dimensional random potential~see, e.g.,
@11# and references therein!. The problem is defined by th
continuous Schro¨dinger equation

c9~x!1@E2U~x!#c~x!50, ~20!

whereU(x) represents white noise, i.e., ad correlated ran-
dom potential with zero mean:

^U~x!&50; ^U~x!U~x8!&52Dd~x2x8!.

This correspondence is not surprising on two grounds: fi
Eq. ~1! is the discrete counterpart of the continuous Sch¨-
dinger equation~20!, and second, the stationary equati
~20! is the formal analog of the dynamical equation for t
kicked oscillator

ẍ~ t !1„v21vj~ t !…x~ t !50,

which represents an equivalent form of the system~7!.
As a second observation, we note that in the present

tion we have described the dynamics of the random oscill
in terms of its Cartesian phase-space coordinates (p,x). In a
equivalent way, we could have used the polar coordinate

r 5Ax21p2,

u5arctan~x/p!,

which represent the action-angle variables of the oscilla
The dynamics of the oscillator is then dictated by the cou
of Itô equations

dr5
^An

2&
2T

r sin4udt2A^An
2&

T
r sinu cosudW~ t !,

du5S v1
^An

2&
T

cosu sin3u Ddt1A^An
2&

T
sin2u dW~ t !,

which can be easily derived from Eqs.~8! using the standard
rules of the Itoˆ calculus. A glance at the stochastic equati
for the angular variable reveals that the latter evolves in
pendently of the radiusr; one can then associate to the Iˆ
-
y
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equation foru a Fokker-Planck equation whose stationa
solution gives the invariant measurer(u) which is the coun-
terpart of the distribution~16! for the Ricatti variablez. Ac-
tually, the two distributions are closely related as a con
quence of the simple relationz5v cotu which links the two
variablesz and u. One could, therefore, have evaluated t
Lyapunov exponent~19! in a alternative way by determining
the invariant measurer(u) first and then by using it to com
pute the averagel5v^cotu&5*dur(u)cotu. The result that
is obtained in this way obviously coincides with the o
expressed by formula~19!.

V. WEAK DISORDER EXPANSION

The weak disorder case is defined by the condition~9!.
This condition implies that, except that at the band edge~i.e.,
for vT→0), the parameter~10! must satisfy the requiremen
uku!1. In this section we analyze, therefore, the expans
of the Lyapunov exponent~19! in the limit k→0. This cor-
responds to studying the behavior of the localization len
inside the energy band for the Anderson model~1! with a
weak disorder.

Making use of expressions~19! and ~17!, it is easy to
verify that for k→0 the Lyapunov exponent can be writte
in the form

l5
^An

2&
4T

(
n50

`

~21!n
G~3n13/2!

n! S k2

48D
n

(
n50

`

~21!n
G~3n11/2!

n! S k2

48D
n

. ~21!

To the lowest order ink this expression reduces to

l5
^An

2&
8T

, ~22!

which represents the basic approximation for the inverse
calization length in the weak disorder case.

Taking into account the relations~6! between the param
eters of the Anderson model~1! and those of the stochasti
oscillators~3! and~8!, the variancêAn

2& that appears in for-
mula ~22! can be expressed as

^An
2&5

^en
2&

12E2/4
.

When the distribution for the random site energiesen is the
box distribution~2!, one can further writêen

2&5W2/12; as a
consequence, expression~22! takes the form

l5
1

T

W2

96~12E2/4!
, ~23!

which, for T51, coincides with the well-known standar
formula for the inverse localization length in the Anders
model @12#.

The extra factor 1/T stems from definition~12! of the
Lyapunov exponent, which implies thatl5^ẋ/x& has the
dimension of a inverse time. In order to have the corr
physical dimension, therefore,l must be inversely propor
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tional to a time parameter which, on the other hand, mus
a specific feature of the noise~4!, since that is the physica
origin of the orbit instability. This requirement singles o
the periodT between two kicks as the only parameter whi
can endowl with the proper physical dimension; the pr
portionality l}1/T is thus fully justified.

The expression~23! corresponds to the result derived b
Thouless using standard perturbation methods@12#. As such,
formula ~23! fails to reproduce the correct behavior of th
Lyapunov exponent at the band center, where the sec
order perturbation theory of Thouless breaks down and
anomaly appears which was first explained in Ref.@13#. This
deviation of the inverse localization length from the behav
predicted by formula~23! is a resonance phenomenon, whi
can be conveniently understood by considering the dynam
of the kicked oscillator~3! @10#. In fact, the band cente
corresponds to the casevT5p/2 and this equality can be
interpreted as the condition that the frequency 1/T of the
kicks be exactly four times the frequencyv/2p of the un-
perturbed oscillator. This generates a resonance effect
manifests itself in a small but clear increase of the locali
tion length with respect to the value predicted by formu
~23! for E50. Once the origin of the anomaly at the ba
center is explained in these terms, it is not surprising that
model ~8! fails to reproduce this feature, because it is ob
ous that the Wiener noiseW(t) cannot conveniently mimic
the regularly time-spaced character of the shot noise~4!. One
might then worry that the model~8! provides an inadequat
description of the Anderson model whenever the period
the unperturbed oscillator and that of the kicks stand in
rational ratio. This is not the case, however, because
resonance effect at the band center is the only one tha
fects the localization length at the second order of the p
turbation theory~ @10#! and is thus of interest for the prese
work. For all the other ‘‘rational’’ values of the energyE
52 cospa with a rational, the effect of the resonance on t
Lyapunov exponent can be seen only by going beyond
second-order approximation in the weak disorder expan
~see details in Ref.@10#!.

VI. THE NEIGHBORHOOD OF THE BAND EDGE

Besides thek→0 limit considered in the previous sectio
one can also study the behavior of the Lyapunov expon
~19! in the complementary casek→`. Physically speaking
the limit k→` can be interpreted in different ways, depen
ing on the reference model. If one bears in mind the kick
oscillator ~3!, then taking the limitk→` is tantamount to
studying the case of a very strong noise. More precisely,
conditionk@1 implies that the kicks play a predominant ro
in the oscillator dynamics with respect to the elastic for
Notice that this is not in contrast with the requirement th
each single kick be weak, as established by the condition~9!.
In fact, regardless of how weak the individual kicks are, th
collective effect can be arbitrarily enhanced by making
interval T between two successive kicks sufficiently shor
than the fraction̂ An

2&/v of the period of the unperturbe
oscillator.

From the point of view of the Anderson model~1!, the
analysis of the casek@1 is equivalent to the study of th
localization length in a neighborhood of the band edge.
e
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understand this point, one should consider that in the w
disorder case, as defined by the relation~9!, the only way to
fulfil the condition k5^An

2&/(vT)→` is to havevT→0.
Correspondingly, the energyE52 cos(vT) must approach
the limit E→22, i.e., the edge of the band. Using relatio
~6!, one can also express the conditionk@1 in the significant
form

22E!^en
2&2/3,

which shows that the investigation of the casek@1 corre-
sponds to studying the behavior of the inverse localizat
length for energy values which are close to the band edge
a distance scale set by the fluctuations of the random
potential.

With the physical meaning of the limitk→` clear in
mind, we can proceed to verify that Eq.~19! reproduces the
correct behavior of the Lyapunov exponent in a neighb
hood of the band edge. For this, it suffices to notice that
substitution

k5
^en

2&

vT sin2~vT!
→k85

^en
2&

~vT!3
~24!

transforms formula~19! in the expression originally obtaine
by Derrida and Gardner for the Lyapunov exponent at
band edge@9#. This implies that Derrida and Gardner’s e
pression coincides with our own forvT→0, since in this
limit the difference between parametersk and k8 vanishes.
The limit vT→0, on the other hand, identifies the band-ed
case: this proves that formula~19! is correct not only inside
the energy band~except that forE50), but also forE→2.
The extended validity range of expression~19! is a relevant
feature; indeed, to the best of our knowledge, no other
mula encompassing thewhole energy band has been prev
ously found for the Lyapunov exponent in the Anders
model.

To conclude our discussion of thek→` limit, we observe
that in this case it may be appropriate to expand the integ
that appear in expressions~19! and ~17! in the series of the
inverse powers ofk. One thus obtains

l5S 3

4k2D 1/3
^An

2&
T

(
n50

`
~22A3 6!n

n!
GS 2n13

6 D ~k21!2n/3

(
n50

`
~22A3 6!n

n!
GS 2n11

6 D ~k21!2n/3

,

which is the counterpart of the expansion~21! of the preced-
ing section. To the lowest order ink21 this expression re-
duces to

l5
1

T

A3 6

2

Ap

G~1/6! S vT

sin~vT! D
2/3

^en
2&1/3,

so that forE52 ~i.e., for vT50), the Lyapunov exponen
turns out to be

l5
1

T

A3 6

2

Ap

G~1/6!
^en

2&1/3,
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in perfect agreement with the result originally found in@9#
~see also@10#!.

VII. CONCLUDING REMARKS

In this work we have analyzed in a thorough way t
correspondence that exists between the 1D Anderson m
~1! on one hand and the random oscillators~3! and~8! on the
other. We have shown how the exponential divergence
nearby trajectories of the oscillator~s! is equivalent to the
localization of electronic eigenstates in the Anderson mo
This equivalence manifests itself in the fact that t
Lyapunov exponent for the random oscillator~8! coincides
with the inverse localization length for the Anderson mod
~1!. This equality holds across thewholeenergy band of the
latter system, with the single exception of the band cen
where the Lyapunov exponent for the stochastic oscilla
~8! does not exhibit the anomaly which characterizes the
verse localization length of the Anderson model~1!. This
discrepancy can be simply explained with the impossibi
for a continuous Wiener process to reproduce the ‘‘re
nant’’ effects which are specifically due to the discrete nat
of the kicks; this is actually the only limitation that preven
the analogy between models~8! and ~1! from being com-
plete.

Once the extent of the equivalence between the
Anderson model and the random oscillator has been clarifi
it becomes possible to envision an extension of this co
spondence to more complicated systems. One can, fo
stance, consider the 1D Anderson model with weak and
related disorder and interpret it in terms of a linear oscilla
with a frequency perturbed by a colored noise. The explo
tion of the correspondence between these two systems c
lead to a better understanding of both, since it might all
one to transfer results and techniques from one model to
other. Very recently it was shown in@3# how to determine
the localization length for the Anderson model withanycor-
related potential; the result, however, is valid only to t
second order of perturbation theory. On the other hand,
the stochastic oscillator, a well-established cumulant exp
sion theory exists~see@14,8#! which allows one to go beyond
the second order of the perturbation theory but can be
,
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plied only if the correlation time of the noise is short enoug
It would therefore be extremely interesting to extend the
plication of these two complementary techniques from
system they were originally conceived for to the different b
corresponding model. As a further and more ambitious g
one can think to extend the current approach to the 2D
3D Anderson model. Relating this quantum model to a cl
sical system of kicked oscillators could open the way to
better understanding of the mechanism of the Anderson
calization in 2D and 3D disordered lattices.

Finally, we would like to point out that the classica
model ~3! of a kicked linear oscillator may find interestin
applications in different physical problems. One example
the motion of a charged particle in modern accelerators
this application, the unperturbed part of Eq.~3! describes
transverse one-dimensional oscillations~‘‘betatron oscilla-
tions’’! of a particle moving in accelerator rings~see, for
example,@15#!. These oscillations are stable; however, t
presence of a large number of thin magnetic lenses loc
along the ring originates an external perturbation that m
lead to instability of the transverse oscillatory motion. It
clear that such a perturbation has the form of a successio
d kicks since the particle moves at high speed around
ring and the lenses are thin, so that the passage of the pa
through each lens can be considered to be instantaneous
amplitudes of the kicks are different for different lense
moreover, there are small time-dependent variations of
magnetic field due to experimental imperfections. As a
sult, this perturbation, albeit weak, can affect the long-tim
dynamics of the particles moving in the accelerator and p
duce a significant increase of their transverse energy,
provoking a loss of beam particles~transverse dimensions o
accelerators are typically small!. It is quite amazing that
these very different effects, quantum localization in dis
dered solids and the loss of particles in accelerators du
the influence of thin magnetic lenses, have much in comm
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